Vacuum-ultraviolet laser source for spectroscopy of trapped thorium ions
- authored by
- J Thielking, K Zhang, J Tiedau, J Zander, G Zitzer, M v Okhapkin, Ekkehard Peik
- Abstract
A tunable vacuum-ultraviolet (VUV) laser source based on four-wave frequency mixing in xenon is presented. Using seed radiation from two continuous-wave lasers, the system allows for precise control of the VUV frequency and is developed for the resonant laser excitation of the Th-229 nucleus to its low-energy isomeric state. The system is prepared to operate in a wide scanning range from 148 nm to 155 nm. The source produces pulses of 6-10 ns duration with up to 40 µJ energy and is coupled via a vacuum beamline to a linear radiofrequency ion trap. In a first implementation of VUV laser spectroscopy of trapped Th
+ ions we excite three previously unknown resonance lines near 149 nm wavelength to electronic levels that are close to the Th-229 isomer energy. The resonances are detected and analyzed via fluorescence of the excited Th
+ ions. An analysis of the lineshape is used to estimate the linewidth of the VUV radiation to be in the range of ⩽ 6 GHz, dominated by phase noise that is enhanced in harmonic generation and in the four-wave mixing process. The prospects for the use of the system in nuclear laser spectroscopy of Th-229 are discussed.
- External Organisation(s)
-
National Metrology Institute of Germany (PTB)
- Type
- Article
- Journal
- New journal of physics
- Volume
- 25
- Pages
- 083026
- ISSN
- 1367-2630
- Publication date
- 14.08.2023
- Publication status
- Published
- Peer reviewed
- Yes
- ASJC Scopus subject areas
- Physics and Astronomy(all)
- Electronic version(s)
-
https://doi.org/10.1088/1367-2630/aced1b (Access:
Open)