Observation of Squeezed States of Light in Higher-Order Hermite-Gaussian Modes with a Quantum Noise Reduction of up to 10 dB

authored by
Joscha Heinze, Benno Willke, Henning Vahlbruch
Abstract

Mirror thermal noise will be a main limitation for the sensitivities of the next-generation ground-based gravitational-wave detectors (Einstein Telescope and Cosmic Explorer) at signal frequencies around 100 Hz. Using a higher-order spatial laser mode instead of the fundamental mode is one proposed method to further mitigate mirror thermal noise. In the current detectors, quantum noise is successfully reduced by the injection of squeezed vacuum states. The operation in a higher-order mode would then require the efficient generation of squeezed vacuum states in this mode to maintain a high quantum noise reduction. In our setup, we generate continuous-wave squeezed states at a wavelength of 1064 nm in the fundamental and three higher-order Hermite-Gaussian modes up to a mode order of 6 using a type-I optical parametric amplifier. We present a significant milestone with a quantum noise reduction of up to 10 dB at a measurement frequency of 4 MHz in the higher-order modes and pave the way for their usage in future gravitational-wave detectors as well as in other quantum noise limited experiments.

Organisation(s)
Institute of Gravitation Physics
QuantumFrontiers
External Organisation(s)
Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
Type
Article
Journal
Physical review letters
Volume
128
ISSN
0031-9007
Publication date
25.02.2022
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Physics and Astronomy(all)
Electronic version(s)
https://doi.org/10.1103/PhysRevLett.128.083606 (Access: Closed)