Ultrastable lasers

Investigations of crystalline mirrors and closed cycle cooling at 124 K

authored by
C. Y. Ma, J. Yu, T. Legero, S. Herbers, D. Nicolodi, M. Kempkes, F. Riehle, D. Kedar, J. M. Robinson, J. Ye, U. Sterr
Abstract

We have investigated crystalline AlGaAs/GaAs optical coatings with three ultra-stable cavities operating at 4 K, 16 K, 124 K and 297 K. The response of the cavities' resonance frequencies to variations in optical power indicates non-thermal effects beyond the photo-thermo-optic effect observed in dielectric coatings. These effects are strongly dependent on the intensity of the intracavity light at 1.5 μm. When the rear side of the mirrors is illuminated with external light, we observe a prominent photo-modified birefringence for photon energies above the GaAs bandgap, which points to a possible mechanism relating our observations to the semiconductor properties of the coatings. Separately, we also present a low maintenance evolution of our 124 K silicon cavity system where the liquid nitrogen based cooling system is replaced with closed cycle cooling from a pulse-tube cryo-cooler.

External Organisation(s)
Physikalisch-Technische Bundesanstalt PTB
JILA
Type
Conference article
Journal
Journal of Physics: Conference Series
Volume
2889
ISSN
1742-6588
Publication date
2024
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
General Physics and Astronomy
Electronic version(s)
https://doi.org/10.1088/1742-6596/2889/1/012055 (Access: Open)