Accurate and efficient Bloch-oscillation-enhanced atom interferometry

verfasst von
Florian Fitzek, Jan-Niclas Kirsten-Siemß, Ernst M. Rasel, Naceur Gaaloul, Klemens Hammerer
Abstract

Bloch oscillations of atoms in optical lattices are a powerful technique that can boost the sensitivity of atom interferometers to a wide range of signals by large momentum transfer. To leverage this method to its full potential, an accurate theoretical description of losses and phases is needed going beyond existing treatments. Here, we present a comprehensive theoretical framework for Bloch-oscillation-enhanced atom interferometry and verify its accuracy through comparison with an exact numerical solution of the Schr\"odinger equation. Our approach establishes design criteria to reach the fundamental efficiency and accuracy limits of large momentum transfer using Bloch oscillations. We compare these limits to the case of current state-of-the-art experiments and make projections for the next generation of quantum sensors.

Organisationseinheit(en)
Quantum Sensing
Institut für Theoretische Physik
Institut für Quantenoptik
QuantumFrontiers
SFB 1227: Designte Quantenzustände der Materie (DQ-mat)
Typ
Preprint
Publikationsdatum
15.06.2023
Publikationsstatus
Elektronisch veröffentlicht (E-Pub)
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2306.09399 (Zugang: Offen)