Ein elementarer Baustein herkömmlicher Elektronik ist der Transistor - ein elektronisches Element zum Schalten und Verstärken von elektronischen Signalen. Ein Computer beispielsweise enthält mehr als eine Milliarde Transistoren und in einer Sekunde werden weltweit nahezu 10 Milliarden Transistoren hergestellt. Einem Forscherteam des Exzellenzclusters Centre for Quantum Engineering and Space-Time Research (QUEST) an der Leibniz Universität Hannover und der Universität Genf ist es nun gelungen, das quantenmechanische Verhalten eines Einzelelektronentransistors, eines sogenannten Quantenpunkts, besser zu verstehen.
Quantenpunkte sind winzige geladene Inseln, die mithilfe modernster Nanostrukturierung hergestellt werden können. Sie werden häufig aufgrund ihrer quantenmechanischen Eigenschaften auch als künstliche Atome bezeichnet. In ihrem Experiment misst die Forschergruppe minimalen elektrischen Stromfluss durch den Transistor. Dieser Strom basiert auf dem quantenmechanischen Tunneleffekt und kann derartig genau eingestellt werden, dass nur ein einziges Elektron zu einem Zeitpunkt in den Transistor gelangen und ihn wieder verlassen kann. Auch in der Messung lassen sich die Elektronen, die den Transistor passieren, einzeln erfassen.
Der untersuchte Strom setzt sich also aus einer Sequenz einzelner, nacheinander durch den Quantenpunkt tunnelnden Elektronen zusammen. Zwischen den Tunnelereignissen dieser Sequenz besteht ein zeitlicher Zusammenhang.
Das Forscherteam aus Hannover und Genf konnte den Durchgang einzelner Elektronen durch den Quantenpunkt mit großer Präzision bestimmen und somit wertvolle Informationen über den grundlegenden quantenmechanischen Tunnelprozess gewinnen. Solche Ergebnisse sind für eine Vielzahl von quantenmechanischen Anwendungen wichtig, beispielsweise bei der verschlüsselten Datenübertragung oder bei der Realisierung von Quantencomputern.
Der Artikel "Measurement of finite-frequency current statistics in a single electron transistor" ist online bei Nature Communications erschienen (DOI: 10.1038/ncomms1620).