Technologies for the ELGAR large scale atom interferometer array

verfasst von
ELGAR , B. Canuel, S. Abend, P. Amaro-Seoane, F. Badaracco, Q. Beaufils, A. Bertoldi, K. Bongs, P. Bouyer, C. Braxmaier, W. Chaibi, N. Christensen, F. Fitzek, G. Flouris, N. Gaaloul, S. Gaffet, C. L. Garrido Alzar, R. Geiger, S. Guellati-Khelifa, K. Hammerer, J. Harms, J. Hinderer, M. Holynski, J. Junca, S. Katsanevas, C. Klempt, C. Kozanitis, M. Krutzik, A. Landragin, I. Làzaro Roche, B. Leykauf, Y. -H. Lien, S. Loriani, S. Merlet, M. Merzougui, M. Nofrarias, P. Papadakos, F. Pereira dos Santos, A. Peters, D. Plexousakis, M. Prevedelli, E. M. Rasel, Y. Rogister, S. Rosat, A. Roura, D. O. Sabulsky, V. Schkolnik, D. Schlippert, C. Schubert, L. Sidorenkov, J. -N. Siemß

We proposed the European Laboratory for Gravitation and Atom-interferometric Research (ELGAR), an array of atom gradiometers aimed at studying space-time and gravitation with the primary goal of observing gravitational waves (GWs) in the infrasound band with a peak strain sensitivity of \(3.3 \times 10^{-22}/\sqrt{\text{Hz}}\) at 1.7 Hz. In this paper we detail the main technological bricks of this large scale detector and emphasis the research pathways to be conducted for its realization. We discuss the site options, atom optics, and source requirements needed to reach the target sensitivity. We then discuss required seismic isolation techniques, Gravity Gradient Noise reduction strategies, and the metrology of various noise couplings to the detector.

Institut für Quantenoptik
Quantum Atom Optics
Institut für Theoretische Physik
QUEST Leibniz Forschungsschule
Elektronisch veröffentlicht (E-Pub)
Elektronische Version(en) (Zugang: Offen)