One-Dimensional Quasicrystals with Power-Law Hopping

verfasst von
X. Deng, S. Ray, S. Sinha, G. V. Shlyapnikov, Luis Santos
Abstract

One-dimensional quasiperiodic systems with power-law hopping, 1/ra, differ from both the standard Aubry-André (AA) model and from power-law systems with uncorrelated disorder. Whereas in the AA model all single-particle states undergo a transition from ergodic to localized at a critical quasidisorder strength, short-range power-law hops with a>1 can result in mobility edges. We find that there is no localization for long-range hops with a≤1, in contrast to the case of uncorrelated disorder. Systems with long-range hops rather present ergodic-to-multifractal edges and a phase transition from ergodic to multifractal (extended but nonergodic) states. Both mobility and ergodic-to-multifractal edges may be clearly revealed in experiments on expansion dynamics.

Organisationseinheit(en)
Institut für Theoretische Physik
SFB 1227: Designte Quantenzustände der Materie (DQ-mat)
Externe Organisation(en)
Indian Institute of Science Education and Research Kolkata
Universität Paris-Süd
Universität Paris-Saclay
National University of Science and Technology MISIS
Universiteit van Amsterdam (UvA)
Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences
Typ
Artikel
Journal
Physical Review Letters
Band
123
ISSN
0031-9007
Publikationsdatum
12.07.2019
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Physik und Astronomie (insg.)
Elektronische Version(en)
https://doi.org/10.48550/arXiv.1808.03585 (Zugang: Offen)
https://doi.org/10.1103/PhysRevLett.123.025301 (Zugang: Geschlossen)