One-Dimensional Quasicrystals with Power-Law Hopping
- verfasst von
- X. Deng, S. Ray, S. Sinha, G. V. Shlyapnikov, Luis Santos
- Abstract
One-dimensional quasiperiodic systems with power-law hopping, 1/ra, differ from both the standard Aubry-André (AA) model and from power-law systems with uncorrelated disorder. Whereas in the AA model all single-particle states undergo a transition from ergodic to localized at a critical quasidisorder strength, short-range power-law hops with a>1 can result in mobility edges. We find that there is no localization for long-range hops with a≤1, in contrast to the case of uncorrelated disorder. Systems with long-range hops rather present ergodic-to-multifractal edges and a phase transition from ergodic to multifractal (extended but nonergodic) states. Both mobility and ergodic-to-multifractal edges may be clearly revealed in experiments on expansion dynamics.
- Organisationseinheit(en)
-
Institut für Theoretische Physik
SFB 1227: Designte Quantenzustände der Materie (DQ-mat)
- Externe Organisation(en)
-
Indian Institute of Science Education and Research Kolkata
Universität Paris-Süd
Universität Paris-Saclay
National University of Science and Technology MISIS
Universiteit van Amsterdam (UvA)
Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences
- Typ
- Artikel
- Journal
- Physical Review Letters
- Band
- 123
- ISSN
- 0031-9007
- Publikationsdatum
- 12.07.2019
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Elektronische Version(en)
-
https://doi.org/10.48550/arXiv.1808.03585 (Zugang:
Offen)
https://doi.org/10.1103/PhysRevLett.123.025301 (Zugang: Geschlossen)