Matter-wave collimation to picokelvin energies with scattering length and potential shape control

verfasst von
Alexander Herbst, Timothé Estrampes, Henning Albers, Robin Corgier, Knut Stolzenberg, Sebastian Bode, Eric Charron, Ernst m. Rasel, Naceur Gaaloul, Dennis Schlippert
Abstract

The sensitivity of atom interferometers depends on their ability to realize long pulse separation times and prevent loss of contrast by limiting the expansion of the atomic ensemble within the interferometer beam through matter-wave collimation. Here we investigate the impact of atomic interactions on collimation by applying a lensing protocol to a

39K Bose-Einstein condensate at different scattering lengths. Tailoring interactions, we measure energies corresponding to (340 ± 12) pK in one direction. Our results are supported by an accurate simulation, which allows us to extrapolate a 2D ballistic expansion energy of (438 ± 77) pK. Based on our findings we propose an advanced scenario, which enables 3D expansion energies below 16 pK by implementing an additional pulsed delta-kick. Our results pave the way to realize ensembles with more than 1 × 10

5 atoms and 3D energies in the two-digit pK range in typical dipole trap setups without the need for micro-gravity or long baseline environments.

Organisationseinheit(en)
Institut für Quantenoptik
Quantum Sensing
Guided Matter Wave Interferometry
Laboratorium für Nano- und Quantenengineering
QUEST Leibniz Forschungsschule
QuantumFrontiers
Typ
Artikel
Journal
Communications Physics
Band
7
ISSN
2399-3650
Publikationsdatum
25.04.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Physik und Astronomie (insg.)
Elektronische Version(en)
https://doi.org/10.1038/s42005-024-01621-w (Zugang: Offen)
https://www.nature.com/articles/s42005-024-01621-w (Zugang: Unbekannt)