Recent Advances in Transition-Metal-Based Catalytic Material for Room-Temperature Sodium–Sulfur Batteries

verfasst von
Frederik Bettels, Zhihua Lin, Zhenhu Li, Yaxin Shao, Fei Ding, Shuangyi Liu, Lin Zhang, Yuping Liu
Abstract

Room-temperature sodium–sulfur (RT Na–S) batteries have emerged as a promising candidate for next-generation scalable energy storage systems, due to their high theoretical energy density, low cost, and natural abundance. However, the practical applications of these batteries are hindered by the notorious shuttle effect of soluble sodium polysulfides (NaPSs) and sluggish reaction kinetics, which result in fast performance loss. To address this issue, recent studies have reported impressive achievements of transition metal nanoparticles/single atoms/cluster/compounds (TM)-based host materials with strong adsorption and catalyzation to NaPSs. These materials can significantly improve the electrochemical performance of RT Na–S batteries. In this review, the recent progress on TM-based host materials for RT Na–S batteries, including iron (Fe)-, cobalt (Co)-, nickel (Ni)-, molybdenum (Mo)-, titanium (Ti)-, vanadium (V)-, manganese (Mn)-, and other TM-based materials are summarized. The design, fabrication, and properties of these host materials are comprehensively summarized and systematically analyzed the underlying chemical inhibition and electrocatalysis mechanism between NaPSs and TM-based catalytic materials. At last, the challenges and prospects for designing efficient TM-based catalytic materials for high-performance RT Na–S batteries are discussed.

Organisationseinheit(en)
Institut für Festkörperphysik
Laboratorium für Nano- und Quantenengineering
Externe Organisation(en)
Chinese Academy of Sciences (CAS)
Typ
Übersichtsarbeit
Journal
Advanced functional materials
Band
34
ISSN
1616-301X
Publikationsdatum
29.01.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektronische, optische und magnetische Materialien, Chemie (insg.), Biomaterialien, Werkstoffwissenschaften (insg.), Physik der kondensierten Materie, Elektrochemie
Elektronische Version(en)
https://doi.org/10.1002/adfm.202302626 (Zugang: Offen)