Contextual segment-based classification of airborne laser scanner data

verfasst von
George Vosselman, Maximilian Coenen, Franz Rottensteiner
Abstract

Classification of point clouds is needed as a first step in the extraction of various types of geo-information from point clouds. We present a new approach to contextual classification of segmented airborne laser scanning data. Potential advantages of segment-based classification are easily offset by segmentation errors. We combine different point cloud segmentation methods to minimise both under- and over-segmentation. We propose a contextual segment-based classification using a Conditional Random Field. Segment adjacencies are represented by edges in the graphical model and characterised by a range of features of points along the segment borders. A mix of small and large segments allows the interaction between nearby and distant points. Results of the segment-based classification are compared to results of a point-based CRF classification. Whereas only a small advantage of the segment-based classification is observed for the ISPRS Vaihingen dataset with 4–7 points/m2, the percentage of correctly classified points in a 30 points/m2 dataset of Rotterdam amounts to 91.0% for the segment-based classification vs. 82.8% for the point-based classification.

Organisationseinheit(en)
Institut für Photogrammetrie und Geoinformation
Externe Organisation(en)
International Institute for Geo-Information Science and Earth Observation
Typ
Artikel
Journal
ISPRS Journal of Photogrammetry and Remote Sensing
Band
128
Seiten
354-371
Anzahl der Seiten
18
ISSN
0924-2716
Publikationsdatum
06.2017
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Atom- und Molekularphysik sowie Optik, Ingenieurwesen (sonstige), Angewandte Informatik, Computer in den Geowissenschaften
Elektronische Version(en)
https://doi.org/10.1016/j.isprsjprs.2017.03.010 (Zugang: Geschlossen)
https://research.utwente.nl/en/publications/a7a03fd9-2c42-485c-bb64-3726a55879de (Zugang: Offen)