Space-borne Bose–Einstein condensation for precision interferometry

verfasst von
Dennis Becker, Maike D. Lachmann, Stephan T. Seidel, Holger Ahlers, Aline N. Dinkelaker, Jens Grosse, Ortwin Hellmig, Hauke Müntinga, Vladimir Schkolnik, Thijs Wendrich, André Wenzlawski, Benjamin Weps, Robin Corgier, Tobias Franz, Naceur Gaaloul, Waldemar Herr, Daniel Lüdtke, Manuel Popp, Sirine Amri, Hannes Duncker, Maik Erbe, Anja Kohfeldt, André Kubelka-Lange, Claus Braxmaier, Eric Charron, Wolfgang Ertmer, Markus Krutzik, Claus Lämmerzahl, Achim Peters, Wolfgang P. Schleich, Klaus Sengstock, Reinhold Walser, Andreas Wicht, Patrick Windpassinger, Ernst M. Rasel
Abstract

Owing to the low-gravity conditions in space, space-borne laboratories enable experiments with extended free-fall times. Because Bose–Einstein condensates have an extremely low expansion energy, space-borne atom interferometers based on Bose–Einstein condensation have the potential to have much greater sensitivity to inertial forces than do similar ground-based interferometers. On 23 January 2017, as part of the sounding-rocket mission MAIUS-1, we created Bose–Einstein condensates in space and conducted 110 experiments central to matter-wave interferometry, including laser cooling and trapping of atoms in the presence of the large accelerations experienced during launch. Here we report on experiments conducted during the six minutes of in-space flight in which we studied the phase transition from a thermal ensemble to a Bose–Einstein condensate and the collective dynamics of the resulting condensate. Our results provide insights into conducting cold-atom experiments in space, such as precision interferometry, and pave the way to miniaturizing cold-atom and photon-based quantum information concepts for satellite-based implementation. In addition, space-borne Bose–Einstein condensation opens up the possibility of quantum gas experiments in low-gravity conditions 1,2 .

Organisationseinheit(en)
Institut für Quantenoptik
QuantumFrontiers
Externe Organisation(en)
Humboldt-Universität zu Berlin
Universität Bremen
Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)
Universität Hamburg
Johannes Gutenberg-Universität Mainz
Universite Paris-Sud
Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik (FBH)
Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST)
Texas A and M University
Technische Universität Darmstadt
Typ
Artikel
Journal
NATURE
Band
562
Seiten
391-395
Anzahl der Seiten
5
ISSN
0028-0836
Publikationsdatum
18.10.2018
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemein
Elektronische Version(en)
https://doi.org/10.48550/arXiv.1806.06679 (Zugang: Offen)
https://doi.org/10.1038/s41586-018-0605-1 (Zugang: Geschlossen)
https://zenodo.org/record/2563905/files/Space-borne%20Bose%E2%80%93Einstein%20condensation%20for%20precision%20interferometry.pdf (Zugang: Offen)