Tailoring the Anisotropic Oxygen Transport Properties in Bulk Ceramic Membranes Based on a Ruddlesden–Popper Oxide by Applying Magnetic Fields

verfasst von
Giamper Escobar Cano, Motohide Matsuda, Zhijun Zhao, Frank Steinbach, Bernd Breidenstein, Hilke Petersen, Andreas Graff, Marc Widenmeyer, Anke Weidenkaff, Armin Feldhoff
Abstract

Textured Nd2NiO4+δ bulk ceramic membranes are fabricated via slip casting in a 0.9 T magnetic field generated by neodymium magnets. This process aligns the oxide grains with their easy-magnetization c-axis parallel to the applied magnetic field. Depending on the magnetic field's direction relative to the slip casting, grains orient either with their a,b-plane or c-axis parallel to the normal direction of the disk-shaped ceramic, thus aligning with the oxygen permeation direction. Without the magnetic field, a non-textured bulk membrane is formed. The microstructure and texture of the ceramic membranes are meticulously analyzed using advanced techniques, including X-ray diffraction, scanning and transmission electron microscopy, as well as related methods. Evaluation of the texturing effect on the oxygen permeation performance shows that the a,b-plane textured Nd2NiO4+δ bulk membrane achieves the highest oxygen permeation fluxes between 1023–1223 K. Additionally, it demonstrates impressive CO₂ stability, maintaining effective performance for at least 140 h due to preferential oxygen transport along the a,b-plane. These characteristics make Nd2NiO4+δ an auspicious material for industrial applications as an oxygen transport membrane, outperforming more susceptible perovskite-based materials. Magnetic alignment thus proves to be an effective method for achieving membrane texturing, enabling precise regulation of oxygen transport properties.

Organisationseinheit(en)
Institut für Physikalische Chemie und Elektrochemie
Institut für Fertigungstechnik und Werkzeugmaschinen
Externe Organisation(en)
Kumamoto University
Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS
Technische Universität Darmstadt
Typ
Artikel
Journal
Advanced science
Band
12
ISSN
2198-3844
Publikationsdatum
27.02.2025
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Medizin (sonstige), Allgemeine chemische Verfahrenstechnik, Allgemeine Materialwissenschaften, Biochemie, Genetik und Molekularbiologie (sonstige), Allgemeiner Maschinenbau, Allgemeine Physik und Astronomie
Elektronische Version(en)
https://doi.org/10.1002/advs.202411251 (Zugang: Offen)