Tailoring the Anisotropic Oxygen Transport Properties in Bulk Ceramic Membranes Based on a Ruddlesden–Popper Oxide by Applying Magnetic Fields
- verfasst von
- Giamper Escobar Cano, Motohide Matsuda, Zhijun Zhao, Frank Steinbach, Bernd Breidenstein, Hilke Petersen, Andreas Graff, Marc Widenmeyer, Anke Weidenkaff, Armin Feldhoff
- Abstract
Textured Nd2NiO4+δ bulk ceramic membranes are fabricated via slip casting in a 0.9 T magnetic field generated by neodymium magnets. This process aligns the oxide grains with their easy-magnetization c-axis parallel to the applied magnetic field. Depending on the magnetic field's direction relative to the slip casting, grains orient either with their a,b-plane or c-axis parallel to the normal direction of the disk-shaped ceramic, thus aligning with the oxygen permeation direction. Without the magnetic field, a non-textured bulk membrane is formed. The microstructure and texture of the ceramic membranes are meticulously analyzed using advanced techniques, including X-ray diffraction, scanning and transmission electron microscopy, as well as related methods. Evaluation of the texturing effect on the oxygen permeation performance shows that the a,b-plane textured Nd2NiO4+δ bulk membrane achieves the highest oxygen permeation fluxes between 1023–1223 K. Additionally, it demonstrates impressive CO₂ stability, maintaining effective performance for at least 140 h due to preferential oxygen transport along the a,b-plane. These characteristics make Nd2NiO4+δ an auspicious material for industrial applications as an oxygen transport membrane, outperforming more susceptible perovskite-based materials. Magnetic alignment thus proves to be an effective method for achieving membrane texturing, enabling precise regulation of oxygen transport properties.
- Organisationseinheit(en)
-
Institut für Physikalische Chemie und Elektrochemie
Institut für Fertigungstechnik und Werkzeugmaschinen
- Externe Organisation(en)
-
Kumamoto University
Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS
Technische Universität Darmstadt
- Typ
- Artikel
- Journal
- Advanced science
- Band
- 12
- ISSN
- 2198-3844
- Publikationsdatum
- 27.02.2025
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Medizin (sonstige), Allgemeine chemische Verfahrenstechnik, Allgemeine Materialwissenschaften, Biochemie, Genetik und Molekularbiologie (sonstige), Allgemeiner Maschinenbau, Allgemeine Physik und Astronomie
- Elektronische Version(en)
-
https://doi.org/10.1002/advs.202411251 (Zugang:
Offen)