Probing Time Dilation in Coulomb Crystals in a High-Precision Ion Trap

verfasst von
J. Keller, D. Kalincev, T. Burgermeister, A. P. Kulosa, A. Didier, T. Nordmann, J. Kiethe, T. E. Mehlstäubler
Abstract

Trapped-ion optical clocks are capable of achieving systematic fractional frequency uncertainties of 10-18 and possibly below. However, the stability of current ion clocks is fundamentally limited by the weak signal of single-ion interrogation. We present an operational, scalable platform for extending clock spectroscopy to arrays of Coulomb crystals consisting of several tens of ions while allowing systematic shifts as low as 10-19. We observe three-dimensional excess micromotion amplitudes inside a Coulomb crystal with atomic spatial resolution and subnanometer amplitude uncertainties, and show that in ion Coulomb crystals of length 400μm and 2 mm, time-dilation shifts of In+ ions due to micromotion can be close to 1×10-19 and below 10-18, respectively. In previous ion traps, excess micromotion would have dominated the uncertainty budget for spectroscopy of even a few ions. By minimizing its contribution and providing a means to quantify it, we open up a path to precision spectroscopy in many-body ion systems, enabling entanglement-enhanced ion clocks and providing a well-controlled, strongly coupled quantum system.

Externe Organisation(en)
Physikalisch-Technische Bundesanstalt (PTB)
Typ
Artikel
Journal
Physical review applied
Band
11
ISSN
2331-7019
Publikationsdatum
07.01.2019
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Physik und Astronomie (insg.)
Elektronische Version(en)
https://doi.org/10.1103/PhysRevApplied.11.011002 (Zugang: Unbekannt)