Lunar Laser Ranging: A tool for general relativity, lunar geophysics and Earth science

verfasst von
Jürgen Müller, Thomas W. Murphy, Ulrich Schreiber, Peter J. Shelus, Jean Marie Torre, James G. Williams, Dale H. Boggs, Sebastien Bouquillon, Adrien Bourgoin, Franz Hofmann
Abstract

Only a few sites on Earth are technically equipped to carry out Lunar Laser Ranging (LLR) to retroreflector arrays on the surface of the Moon. Despite the weak signal, they have successfully provided LLR range data for about 49 years, generating about 26,000 normal points. Recent system upgrades and new observatories have made millimeter-level range accuracy achievable. Based on appropriate modeling and sophisticated data analysis, LLR is able to determine many parameters associated with Earth–Moon dynamics, involving the lunar ephemeris, lunar physics, the Moon’s interior, reference frames and Earth orientation parameters. LLR has also become one of the strongest tools for testing Einstein’s theory of general relativity in the solar system. By extending the standard solution, it is possible to solve for parameters related to gravitational physics, like the temporal variation of the gravitational constant, metric parameters as well as the strong equivalence principle, preferred-frame effects and standard-model extensions. This paper provides a review about LLR measurement and analysis. After a short historical overview, we describe the key findings of LLR, the apparatus and technologies involved, the requisite modeling techniques, some recent results and future prospects on all fronts. We expect continued improvements in LLR, maintaining its lead in contributing to science.

Organisationseinheit(en)
Institut für Erdmessung
QuantumFrontiers
Externe Organisation(en)
University of California at San Diego
Technische Universität München (TUM)
University of Texas at Austin
Observatoire Côte d'Azur
Observatoire de Paris (OBSPARIS)
Université Paris Sciences et Lettres
Universite Paris 6
Università di Bologna
California Institute of Technology (Caltech)
Typ
Artikel
Journal
Journal of geodesy
Band
93
Seiten
2195-2210
Anzahl der Seiten
16
ISSN
0949-7714
Publikationsdatum
11.2019
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Geophysik, Geochemie und Petrologie, Computer in den Geowissenschaften
Elektronische Version(en)
https://doi.org/10.1007/s00190-019-01296-0 (Zugang: Geschlossen)