Trapping of a Polyketide Synthase Module after C−C Bond Formation Reveals Transient Acyl Carrier Domain Interactions

verfasst von
Maria Dell, Mai Anh Tran, Michael J. Capper, Srividhya Sundaram , Jonas Fiedler, Jesko Koehnke, Ute A. Hellmich, Christian Hertweck
Abstract

Modular polyketide synthases (PKSs) are giant assembly lines that produce an impressive range of biologically active compounds. However, our understanding of the structural dynamics of these megasynthases, specifically the delivery of acyl carrier protein (ACP)-bound building blocks to the catalytic site of the ketosynthase (KS) domain, remains severely limited. Using a multipronged structural approach, we report details of the inter-domain interactions after C−C bond formation in a chain-branching module of the rhizoxin PKS. Mechanism-based crosslinking of an engineered module was achieved using a synthetic substrate surrogate that serves as a Michael acceptor. The crosslinked protein allowed us to identify an asymmetric state of the dimeric protein complex upon C−C bond formation by cryo-electron microscopy (cryo-EM). The possible existence of two ACP binding sites, one of them a potential “parking position” for substrate loading, was also indicated by AlphaFold2 predictions. NMR spectroscopy showed that a transient complex is formed in solution, independent of the linker domains, and photochemical crosslinking/mass spectrometry of the standalone domains allowed us to pinpoint the interdomain interaction sites. The structural insights into a branching PKS module arrested after C−C bond formation allows a better understanding of domain dynamics and provides valuable information for the rational design of modular assembly lines.

Organisationseinheit(en)
Institut für Lebensmittelchemie
Externe Organisation(en)
Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e. V.Hans-Knöll-Institut
Friedrich-Schiller-Universität Jena
University of Glasgow
Goethe-Universität Frankfurt am Main
Typ
Artikel
Journal
Angewandte Chemie - International Edition
Band
63
Anzahl der Seiten
8
ISSN
1433-7851
Publikationsdatum
19.02.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Katalyse, Chemie (insg.)
Elektronische Version(en)
https://doi.org/10.1002/anie.202315850 (Zugang: Offen)