On the metrizability of m -Kropina spaces with closed null one-form

verfasst von
Sjors Heefer, Christian Pfeifer, Jorn Van Voorthuizen, Andrea Fuster
Abstract

We investigate the local metrizability of Finsler spaces with m-Kropina metric F = α1+mβ-m, where β is a closed null one-form. We show that such a space is of Berwald type if and only if the (pseudo-)Riemannian metric α and one-form β have a very specific form in certain coordinates. In particular, when the signature of α is Lorentzian, α belongs to a certain subclass of the Kundt class and β generates the corresponding null congruence, and this generalizes in a natural way to arbitrary signature. We use this result to prove that the affine connection on such an m-Kropina space is locally metrizable by a (pseudo-)Riemannian metric if and only if the Ricci tensor constructed from the affine connection is symmetric. In particular, we construct all counterexamples of this type to Szabo's metrization theorem, which has only been proven for positive definite Finsler metrics that are regular on all of the slit tangent bundle.

Organisationseinheit(en)
QuantumFrontiers
Externe Organisation(en)
Eindhoven University of Technology (TU/e)
Universität Bremen
Typ
Artikel
Journal
Journal of mathematical physics
Band
64
ISSN
0022-2488
Publikationsdatum
01.02.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Statistische und nichtlineare Physik, Mathematische Physik
Elektronische Version(en)
https://doi.org/10.1063/5.0130523 (Zugang: Offen)