The representation dimension of k [ x, y ] / ( x2, yn )

verfasst von
Thorsten Holm, Wei Hu
Abstract

The representation dimension of an Artin algebra was defined by M. Auslander in 1970. The precise value is not known in general, and is very hard to compute even for small examples. For group algebras, it is known in the case of cyclic Sylow subgroups. For some group algebras (in characteristic 2) of rank at least 3 the precise value of the representation dimension follows from recent work of R. Rouquier. There is a gap for group algebras of rank 2. In this paper we show that for all n {greater than or slanted equal to} 0 and any field k the commutative algebras k [ x, y ] / ( x2, y2 + n ) have representation dimension 3. For the proof, we give an explicit inductive construction of a suitable generator-cogenerator. As a consequence, we obtain that the group algebras in characteristic 2 of the groups C2 × C2m have representation dimension 3. Note that for m {greater than or slanted equal to} 3 these group algebras have wild representation type.

Externe Organisation(en)
University of Leeds
Beijing Normal University
Typ
Artikel
Journal
Journal of algebra
Band
301
Seiten
791-802
Anzahl der Seiten
12
ISSN
0021-8693
Publikationsdatum
15.07.2006
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Algebra und Zahlentheorie
Elektronische Version(en)
https://doi.org/10.1016/j.jalgebra.2005.11.037 (Zugang: Offen)