Dispersive estimates for Maxwell's equations in the exterior of a sphere

verfasst von
Yan long Fang, Alden Waters
Abstract

The goal of this article is to establish general principles for high frequency dispersive estimates for Maxwell's equation in the exterior of a perfectly conducting ball. We construct entirely new generalized eigenfunctions for the corresponding Maxwell propagator. We show that the propagator corresponding to the electric field has a global rate of decay in L1−L operator norm in terms of time t and powers of h. In particular we show that some, but not all, polarizations of electromagnetic waves scatter at the same rate as the usual wave operator. The Dirichlet Laplacian wave operator L1−L norm estimate should not be expected to hold in general for Maxwell's equations in the exterior of a ball because of the Helmholtz decomposition theorem.

Organisationseinheit(en)
Institut für Analysis
Externe Organisation(en)
University College London (UCL)
Typ
Artikel
Journal
Journal of differential equations
Band
415
Seiten
855-885
Anzahl der Seiten
31
ISSN
0022-0396
Publikationsdatum
15.01.2025
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Analysis, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2308.00536 (Zugang: Offen)
https://doi.org/10.1016/j.jde.2024.10.024 (Zugang: Offen)