A simple tensor network algorithm for two-dimensional steady states

verfasst von
Augustine Kshetrimayum, Hendrik Weimer, Román Orús
Abstract

Understanding dissipation in 2D quantum many-body systems is an open challenge which has proven remarkably difficult. Here we show how numerical simulations for this problem are possible by means of a tensor network algorithm that approximates steady states of 2D quantum lattice dissipative systems in the thermodynamic limit. Our method is based on the intuition that strong dissipation kills quantum entanglement before it gets too large to handle. We test its validity by simulating a dissipative quantum Ising model, relevant for dissipative systems of interacting Rydberg atoms, and benchmark our simulations with a variational algorithm based on product and correlated states. Our results support the existence of a first order transition in this model, with no bistable region. We also simulate a dissipative spin 1/2 XYZ model, showing that there is no re-entrance of the ferromagnetic phase. Our method enables the computation of steady states in 2D quantum lattice systems.

Organisationseinheit(en)
Institut für Theoretische Physik
SFB 1227: Designte Quantenzustände der Materie (DQ-mat)
Externe Organisation(en)
Johannes Gutenberg-Universität Mainz
Typ
Artikel
Journal
Nature Communications
Band
8
ISSN
2041-1723
Publikationsdatum
03.11.2017
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Chemie (insg.), Biochemie, Genetik und Molekularbiologie (insg.), Physik und Astronomie (insg.)
Elektronische Version(en)
https://doi.org/10.1038/s41467-017-01511-6 (Zugang: Offen)